EE 330 Lecture 35

Telescopic Cascode OpAmp

Amplifier Biasing

Other Amplifier Structures

Frequency-Dependent Performance of Amplifiers

Parasitic Capacitances in MOS Devices

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00 PM

Review From Previous Lecture

Current Sources/Mirrors Summary

- Current mirror gain can be accurately controlled !
- Layout is important to get accurate gain (for both MOS and BJT)

Review From Previous Lecture

Layout of Current Mirrors

Even Better Layout

$$
M = \left[\frac{W_2}{W_1} \frac{L_1}{L_2}\right]
$$

$$
M = \left[\frac{2W_1 + 4\Delta W}{W_1 + 2\Delta W} \bullet \frac{L_1 + 2\Delta L}{L_1 + 2\Delta L} \right] = 2
$$

$$
M = \left[\frac{2W_1 + 4\Delta W}{W_1 + 2\Delta W} \bullet \frac{L_1 + 2\Delta L}{L_1 + 2\Delta L} \right] = 2
$$

- **This is termed a common-centroid layout**
- **Linear gradient mismatch eliminated with common-centroid layout !**

Common-Centroid Layouts Review From Previous Lecture

- Individual transistors often decomposed into parallel multiple unary devices connected in parallel
- Common-Centroid layout approach widely used to minimize (ideally cancel) gradient effects in matching-critical circuits
- Applications extend well beyond current mirrors
- More than 2 devices can share a common centroid

Cascode Configuration **Discuss** Review From Previous Lecture

$$
A_{VCC} \approx -\left[\frac{g_{m1}}{g_{02}}\beta\right] \approx -\left[\frac{g_{m1}}{g_{01}}\right]\beta
$$

$$
g_{0CC} \approx \frac{g_{02}}{\beta}
$$

$$
A_{VCC} \approx -\left[\frac{g_{m1}}{g_{01}}\right]\beta = \left[\frac{2V_{AF}}{V_t}\right]\beta = [-8000]100
$$

$$
A_{VCC} \approx -800,000
$$

This gain is very large and only requires two transistors!

What happens to the gain if a transistor-level current source is used for IB?

Cascode Configuration Review From Previous Lecture

But recall

$$
A_{VCC} \cong -\left[\frac{g_{m1}}{g_{01}}\right]\beta
$$

Th

$$
A_V \approx -\left[\frac{g_{m1}}{g_{01}}\right]
$$

$$
A_V \approx -\left[\frac{I_{CQ}}{I_{CQ}}\right]_{V_{AF}} = -\left[\frac{V_{AF}}{V_t}\right] \approx -8000
$$

- This is still a factor of 2 better than that of the CE amplifier with transistor current $\texttt{source} \mid_{\textsf{A}_{\textsf{MCF}}}\textcolor{red}{\simeq} - \boxed{\textsf{g}_{\textsf{m1}}}$ VCE 01 Avec $\cong -\frac{g_1}{g_2}$ $\left(A_{\text{VCE}} \cong -\left[\frac{g_{\text{m1}}}{2g_{01}}\right]\right)$
- **It only requires one additional transistor**
- **But its not nearly as good as the gain the cascode circuit seemed to provide**

Cascode Configuration Comparisons Review From Previous Lecture

In particular, one with a higher output impedance?

Review From Previous Lecture

Better current sources

Need a higher output impedance than g_{o}

Can a current source be built with the cascode circuit ?

Cascode current sources

Cascode current sources

For the BJT cascode current sources

$$
g_{0CC} = \left[\frac{g_{02}(g_{01} + g_{\pi 2})}{g_{01} + g_{02} + g_{\pi 2} + g_{\pi 2}}\right] \approx \left[\frac{g_{02}g_{\pi 2}}{g_{\pi 2}}\right] = \frac{g_{01}}{\beta}
$$

Cascode Configuration Review From Previous Lecture

$$
A_V = -\left[\frac{g_{m1}}{g_{01}}\right]\frac{\beta}{2}
$$

2
0
0
0

$$
A_V = -\left[8000\right]\frac{100}{2} \approx -400,000
$$

2

This gain is very large and is a factor of 2 below that obtained with an ideal current source biasing

Although the factor of 2 is not desired, the performance of this circuit is still very good

This factor of 2 gain reduction is that same as was observed for the CE amplifier when a transistorlevel current source was used

Cascode Configuration Comparisons ^VIN ^VOUT ^Q¹ V_{DD} I_{B} (m V $A_{V} = \frac{-g}{2}$ = V_{CC} V_{YY} V_{xx} Q₂ $\bm{v}_{\texttt{OUT}}$ V_{CC} m1 A $_{\rm V}$ \equiv $- \vphantom{1} \left| \frac{\mathsf{g}_{\mathsf{m1}}}{\mathsf{g}} \right|$ β \lceil a_{m 1} \rceil \approx - $\left\lfloor \frac{901}{901} \right\rfloor$ **Discuss** Review From Previous Lecture

0 g

 $A_v = -8,000$

 V_{FF}

01

g

m1

 $g_{\sf m1} \mid \! \beta$

g $_{01}$ |2 $\,$

01

Review From Previous Lecture

High Gain Amplifiers Seldom Used Open Loop

If A_v =-400,000 and V_{IN} increases by 1mV, what would happen at the output?

 V_{OUT} would decrease by 400,000 x 1mV=-400V

High Gain Amplifier Comparisons (BJT) Review From Previous Lecture

m1

 $v_{\text{\tiny IN}} \oplus$

V

 V_{SS}

m1

 $-\left[\frac{\textsf{g}_{\textsf{m1}}}{\textsf{g}_{\textsf{01}}}\right]$

 $A_{V} = -\left| \frac{\mathsf{g}_{m1}}{\mathsf{g}_{m2}} \right| \underline{\beta}$

01

g₀₁ |2

 \lceil a_{m 1} \rceil

01

g

V

A $v \equiv -\frac{g}{g}$

- Single-ended high-gain amplifiers inherently difficult to bias (because of the high gain)
- Biasing becomes practical when used in differential applications
- These structures are widely used but usually with differential inputs

High Gain Amplifier Comparisons (n-ch MOS) Review From Previous Lecture

The Cascode Amplifier

- **Operational amplifiers often built with basic cascode configuration**
- **CMFB used to address the biasing problem**
- **Usually configured as a differential structure when building op amps**
- **Have high output impedance (but can be bufferred)**
- **Terms "telescopic cascode", "folded-cascode", and "regulated cascode" often refer to op amps based upon the cascode configuration**

Two-stage CE:CE or CS:CS Cascade

 $\mathsf{A}_{\mathsf{VCB}} = ?$

 $A_{VCM} = ?$

- **Significant increase in gain**
- **Gain is noninverting**
- **Comparable to that obtained with the cascode but noninverting**

Note factor or 2 and 4 reduction in gain due to actual current source bias

Two-stage CE Cascade Three-stage CE Cascade

- **Large gains can be obtained by cascading**
- **Gains are multiplicative (when loading is included)**
- **Large gains used to build "Op Amps" and feedback used to control gain value**
- **Some attention is needed for biasing but it is manageable**
- **Minor variant of the two-stage cascade often used to build Op Amps**
- **Compensation of two-stage cascade needed if feedback is applied to maintain stability**
- **For many years three or more stages were seldom cascaded because of challenges in compensation to maintain stability though recently some industrial adoptions**

Differential Amplifiers

Basic operational amplifier circuit

Amplifier biasing is that part of the design of a circuit that establishes the desired operating point (or Q-point)

Goal is to invariably minimize the impact the biasing circuit has on the small-signal performance of a circuit

Usually at most 2 dc power supplies are available and these are often fixed in value by system requirements – this restriction is cost driven

Discrete amplifiers invariable involve adding biasing resistors and use capacitor coupling and bypassing

Integrated amplifiers often use current sources which can be used in very large numbers and are very inexpensive

Example:

Desired small-signal circuit Common Emitter Amplifier

Biased small-signal circuit

Example:

Desired small-signal circuit Common Collector Amplifier

Biased circuit

Example:

Desired small-signal circuit Inverting Feedback Amplifier

Biased circuit

Other Basic Configurations

Darlington Configuration

2,663,806

SEMICONDUCTOR SIGNAL TRANSLATING DEVICE

- **Current gain is approximately β²**
- **Two diode drop between Beff and Eeff**

Other Basic Configurations

Sziklai Pair

2,791,644

G. C. SZIKLAI PUSH-PULL AMPLIFIER WITH COMPLEMENTARY TYPE TRANSISTORS

Filed Nov. 7, 1952

- **Gain similar to that of Darlington Pair**
- **Current gain is approximately βⁿ β^p**
- **Current gain will not be as large when** $β_p < β_n$
- **Only one diode drop between Beff and Eeff**

Ideally $V_{\text{OUT}}=V_{\text{IN}}$

↽

Voltage shift varies with V_{IN} in buffer Assume load terminated on gnd Current through M_1 changes with V_{IN}

↽

Assume load terminated on gnd

Ideally $V_{\text{OUT}}=V_{\text{IN}}$

 I_{B2}

↔

Current through shift transistor is constant for Super Buffer as V_{IN} changes so voltage shift does not change with V_{IN}

 $I_{\rm B1}$

(optional)

 $M₂$

 R_L

V_{OUT}

Same nominal voltage shift as buffer

Other Basic Configurations

Low offset buffers

- **Actually a CC-CC or a CD-CD cascade**
- **Significant drop in offset between input and output**
- **Biasing with DC current sources**
- **Can Add Super Buffer to Output**

Other Basic Configurations

Voltage Attenuator

- **Attenuation factor is quite accurate (Determined by geometry)**
- **Infinite input impedance**
- **M¹ in triode, M² in saturation**
- **Actually can be a channel-tapped structure**

Frequency-Dependent Performance of Amplifiers

- This capacitance was modeled previously and exists when the transistor is operating in triode or saturation
- But there are others that also affect high-frequency or high-speed operation

Recall that pn junctions have a depletion region!

pn junction capacitance

m

FB

V

φ

B

pn junction capacitance

The bottom and the sidewall:

For a pn junction capacitor

 $\left(\begin{array}{cc} \boldsymbol{\mathsf{1}}\text{-}\frac{\cdot\text{-}\text{-}\text{-}}{\mathbf{\varphi}} \\ \boldsymbol{\varphi}_{\text{-}\text{-}} \end{array} \right)$ Model Parameters: $\varphi_{\rm s}$) and the set of φ

 C_{BOT} and C_{SW} are capacitance densities

 $\frac{C_{\text{swo}}}{V_{\text{FB}}}\quad V_{\text{FB}}$: forward bias on junction
 $\frac{V_{\text{FB}}}{\Psi_{\text{FB}}}$ Model Parameters: V) $\left(\begin{array}{ccc} & V \end{array}\right)^{m}$ A : Junction Area P: Junction Perimeter V_{FB} : forward bias on junction

 $\{ \mathsf{C}_{\mathsf{BOTO}}^{}, \mathsf{C}_{\mathsf{SWO}}^{}, \phi_{\mathsf{B}}, \mathsf{m} \}$

Types of Capacitors in MOSFETs

- 1. Fixed Capacitors
- a. Fixed Geometry
	- b. Junction
	- 2. Operating Region Dependent

Parasitic Capacitors in MOSFET **Fixed Capacitors – Fixed Geometry**

Overlap Capacitors: C_{GDO} , C_{GSO} L_D: lateral diffusion

Cap Density: C_{OX}

Parasitic Capacitance Summary (partial)

 L_D is a model parameter

Overlap Capacitance Model Parameters

Types of Capacitors in MOSFETs

- 1. Fixed Capacitors
	- a. Fixed Geometry
- b. Junction
	- 2. Operating Region Dependent

Parasitic Capacitors in MOSFET **Fixed Capacitors- Junction**

Junction Capacitors: C_{BS1} , C_{BD1}

- Fixed Capacitors

Overlap Capacitors: C_{GDO}, C_{GSO} Junction Capacitors: C_{RS1} , C_{BD1}

Fixed Parasitic Capacitance Summary

 C_{ROT} and C_{SW} are model parameters

C_{BOT} and C_{SW} model parameters

Types of Capacitors in MOSFETs

- 1. Fixed Capacitors
	- a. Fixed Geometry
	- b. Junction
- **2.** Operating Region Dependent

Parasitic Capacitors in MOSFET **Operation Region Dependent -- Cutoff**

Cutoff Capacitor: C_{GBCO}

Parasitic Capacitors in MOSFET **Operation Region Dependent -- Cutoff**

Cutoff Capacitor: C_{GBCO}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Cutoff

Overlap Capacitors: C_{GDO}, C_{GSO} Junction Capacitors: C_{BS1}, C_{BD1} **Cutoff Capacitor: C_{GBCO}**

Parasitic Capacitance Summary \overline{NC}_{GS} $\begin{array}{|c|c|c|c|}\n\hline\nC_{\sf BD} & C_{\sf BD}\n\end{array}$ C_{BS} C_{BG} G B D

S

Parasitic Capacitors in MOSFET **Operation Region Dependent -- Ohmic**

Note: The Channel is not a node in the lumped device model so can not directly include this distributed capacitance in existing models

Note: The distributed channel capacitance is usually lumped and split evenly between the source and drain nodes

Ohmic Capacitor: C_{GCH}, C_{BCH}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed -- Ohmic

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1}, C_{BD1} **Ohmic Capacitor: C_{GCH}, C_{BCH}**

Parasitic Capacitance Summary $\overline{\Gamma}$ C_{GS} C_{GD} C_{BD} C_{BS} C_{BG} G B D S Lumped C_{GC} and C_{BC} to analytically avoid dealing with distributed capacitance

Parasitic Capacitors in MOSFET **Operation Region Dependent -- Saturation**

distributed capacitors to the channel are generally lumped to the source node

Saturation Capacitors: C_{GCH}, C_{BCH}

Parasitic Capacitors in MOSFET Operation Region Dependent and Fixed --Saturation

Overlap Capacitors: C_{GDO} , C_{GSO} Junction Capacitors: C_{BS1} , C_{BD1} **Saturation Capacitors: C_{GCH}, C_{BCH}**

- 2/3 C_{OX} WL is often attributed to C_{GCH} to account for LD and saturation
- This approximation is reasonable for minimum-length devices but not so good for longer devices

Parasitic Capacitance Summary $\overline{\sim}$ C_{GS} C_{GD} C_{BD} C_{BS} C_{BG} G B D Lumped C_{GC} and C_{BC} to analytically avoid dealing with distributed capacitance

S

Parasitic Capacitance Summary D

Observe there is no C_{DS} in this model because does not physically exist

Parasitic Capacitance Summary

High Frequency Large Signal Model High Frequency Small Signal Model

Often $V_{BS}=0$ and $C_{BG}=0$, so simplifies to

Parasitic Capacitance Implications

The parasitic capacitances inherently introduce an upper limit on how fast either digital circuits or analog circuits can operate in a given process

Two parameters, $\, {\sf f}_{\mathsf{MAX}} \,$ and ${\sf f}_{\mathsf{T}} \,$ (not defined yet) are two metric that are used to specify the fundamental speed limit in a semiconductor process

The dominant parasitic capacitances for most circuits are C_{GS} and C_{BD}

Stay Safe and Stay Healthy !

End of Lecture 35